Racket Libraries
5.1 
5.2 双 and 􏿴
5.3 􏻿
5.4 􏿰
5.5 
5.6 􏷂
5.7 􏶿
5.8 􏷁
5.9 
5.10 􏺃
5.11 Conditionals
5.12 
5.13 
5.14 未分类
On this page:
5.2.1 Naming Rules
5.2.2 双, 㐅, 􏿴, 􏿫, 阴, 阳
5.2.3 阴阳+  -
5.2.4 􏿝, 􏿜
5.2.5 
5.2.6 􏼏, 􏼏*
5.2.7 􏼓, 􏼎
5.2.8 弔, 弓,弓*, 􏹂, 􏹂*
5.2.9 􏷜, 􏷛, 􏷚, 􏷙, 􏷘, 􏷗, 􏷖, 􏷕, 􏷔, 􏷓
5.2.10 末, 􏹨
5.2.11 
5.2.12 􏾺,𨚞, 􏷵,􏷴, 􏸄,􏸃, 􏾺/  入,𨚞/  入, 􏾺?
5.2.13 左􏸑, 左􏸒, 左􏸓
5.2.14 𰂋,偏,􏾜,重、𠝤
5.2.15 􏾛、𠆯
5.2.16 􏹋、􏹉、􏹊~、􏹊^,􏹅,􏹄,􏹌、􏹈,􏹇~、􏹇
5.2.17 􏹈分,􏹈巨
5.2.18 􏷒,􏷑, 􏷐,􏷏,􏷎,右􏷎
5.2.19 􏷑􏹈,􏷑􏿝, 􏷑􏺗、􏷑􏺘
5.2.20 􏷍/  组合、􏷍/  排列组合,􏷍/  笛卡尔积,􏷍/  分组
5.2.21 ming/  racket/  base
双?
㐅?
􏿴
􏿫
􏿴?
􏼎
􏿝
􏾛
􏹊~
􏹊~/  􏷇
􏹊~/  􏷅
􏹊~/  
􏹊^
􏹊^/  􏷇
􏹊^/  􏷅
􏹊^/  
𠆯
􏹋
􏹋/  􏷇
􏹋/  􏷅
􏹋/  
􏹅
􏹉
􏹉/  􏾗
􏹉/  􏾃
􏹉/  
􏹄
􏹌
􏹈
􏷒
􏷑
􏷐
􏷏
􏷎
右􏷎
阳+
阴+
阳-
阴-
阳+  +
阴+  +
阳-+
阴-+
阳+  -
阴+  -
阳--
阴--
阳+  +  +
阴+  +  +
阳-+  +
阴-+  +
阳+  -+
阴+  -+
阳--+
阴--+
阳+  +  -
阴+  +  -
阳-+  -
阴-+  -
阳+  --
阴+  --
阳---
阴---
5.2.22 ming/  racket/  list
􏷜
􏷛
􏷚
􏷙
􏷘
􏷗
􏷖
􏷕
􏷔
􏷓
􏹨
􏼓
攸/  
􏹂
弓*
􏹂*
􏾺
𨚞
􏷵
􏷴
􏾺/  
𨚞/  
􏷵/  
􏷴/  
􏸄
􏸃
􏸄/  
􏸃/  
􏾺?
左􏸑
左􏸒
左􏸓
􏿜
𰂋
􏾜
𠝤
􏹇
􏹈分
􏹈巨
􏹈􏷑
􏷑􏿝
􏼏
􏼏*
􏷍/  组合
􏷍/  排列组合
􏷍序列/  组合
􏷍序列/  排列组合
􏷑􏺗
􏷑􏺘
􏷍/  分组
􏷍/  笛卡尔积
􏹇~
8.15

5.2 双 and 􏿴🔗

Originates from Pairs and Lists and Extends to 􏿴.

5.2.1 Naming Rules🔗

To extend Naming Rules, specifically there are:

Character

Connotation

Elucidation

Example

􏷫 as radical

resembles 􏿴

Has the similar function process as it resembling and the type of output is same as 􏿴 accordingly.

􏼓 􏼎 􏼏 􏿝

􏷩 as radical

resembles 􏿫

Has the similar function process as it resembling and the type of output is same as (􏿫) accordingly.

􏿜

 as component

general subset or cousion

Returns a new list with elements produced from the input list.(Implies the input data and output data are the same type.)

𰂋 􏾜 􏾛 𠆯 􏹈 􏷍?

 as component

serial subset

Returns a new list with elements serially produced from the input list.(Implies the input data and output data are the same type.)

􏾝 􏾺 𨚞 􏹋

􏸋 as component

serial subset of lists

Returns a new list with elements serially produced from the input lists.(Implies the multiple input data and output data are the same type.)

左􏸑

 as component

broken subset

Returns a new list with removing some elements from the input list.

􏷵 􏷴 􏺊 􏾘 𠝤 􏹊 􏹇

􏸌 as component

broken subset of lists

Returns a new list with removing some elements from the input lists.(Implies the multiple input data and output data are the same type.)

左􏸒

 as component

split input list to values

Implies the type of output data is values().

􏸄 􏸃

􏸍 as component

split input lists to values

Implies input data is lists and the type of output data is values().

􏸄 􏸃

 as component

same as /入

Implies the type of input data is function.

􏹃 􏹌 􏹅 􏹇 􏹂

 as component

product data

Manufactures data and product new one, implies the type of output data is not same as input.

􏷎

Phrase

-

-

-

suffixed with 

split data to values

􏹈分

Punctuation

-

-

-

suffixed with *

strengthen

Strengthen the process, thus the data of output may become longer, and the type may be changed accordingly.

弓* 􏹂* 􏼏*

suffixed with ~

soften

Soften the process, thus the output data shorter.

􏹊~ 􏹇~

suffixed with ^

list as input

Implies the type of input data is list.

􏹊^ 伄^ 􏾘^

inserted with /

extend prefix

Suffix of / can be considered as an extending explanation of its prefix.

􏷍/组合 􏷍/分组

suffixed with ?

boolean as output

Implies the type of output data is boolean.

双? 􏿴? 􏿳?

Hybrid

-

-

-

has /入

function as input

Implies the type of input data is function.

攸/入 􏾺/入 𨚞/入

5.2.2 双, 㐅, 􏿴, 􏿫, 阴, 阳 🔗

Abstractly, we can pair two data together. Integrally, it is called . Separately, the position where set the first data is call , the second is call .

Further more, if we put another to position of the former , we get a linked data. Likewise, the linked data can be extended as long as you want. By this way, if we leave of the ending to be empty(), we get a data called 􏿴; if not, we call it 􏿫.

: : resembles the picture of human’s right hand trying to hold an object. Two human hand here stand for an object with including two holding data.
ideograph
: simplified from . : simplified from , which means empty.
ideograph
􏿴: the reaching to left bottom means multiple linked together, means ending with empty().
ideograph
􏿫: resembles 􏿴 except substituting with , which means the ending position is not empty().
ideograph
: : means sun, implicitly means the former part of an object, or the position aspect of an object. Ref to wiki.
ideograph
: : means moon, implicitly means the secondary part of of an object, or the negative aspect of an object. Ref to wiki.
ideograph

Examples:
> ( 1 2)

'(1 . 2)

> ( 1 ( 2 ( 3 ( 4 ))))

'(1 2 3 4)

> (􏿴 1 2 3 4)

'(1 2 3 4)

> ( 1 ( 2 ( 3 4)))

'(1 2 3 . 4)

> (􏿫 1 2 3 4)

'(1 2 3 . 4)

> (􏿫 1 2 3 '(4))

'(1 2 3 4)

> ( '(1 . 2))

1

> ( '(1 . 2))

2

> ( '(1 2 3 4))

1

> ( '(1 2 3 4))

'(2 3 4)

5.2.3 阴阳+-🔗

阳+/阴+/阳-/阴-: For the case of functions starting with or and following with + or -, + stands for and - stands for .
For example, (阴+-- lst) is short for ( ( ( ( lst)))).

ideograph

Examples:
> (阴+ '(1 2 3 4))

2

> (阴-+ '(1 2 3 4))

3

> ( '((1 1.1) 2 3 4))

'(1 1.1)

> (阳+ '((1 1.1) 2 3 4))

1

> (阳-+ '((1 1.1) 2 3 4))

1.1

5.2.4 􏿝, 􏿜🔗

􏿝/􏿜: : simplified from , which means append, going through a few objects and connect them together.

ideograph

Examples:
> (􏿴 1 2 3 4)

'(1 2 3 4)

> (􏿝 '(1) '(2) '(3) '(4))

'(1 2 3 4)

> (􏿝 '(1) '(2 3 4) '(5 6) '(7))

'(1 2 3 4 5 6 7)

> (􏿝 '(a b) 'c)

'(a b . c)

> (􏿝 '(a b) '(c . d))

'(a b c . d)

> (􏿝 '() 'a)

'a

> (􏿝 'a)

'a

> (􏿫 1 2 3 4)

'(1 2 3 . 4)

> (􏿜 '(1) '(2) '(3) '(4))

'(1 2 3 . 4)

> (􏿜 '(1) '(2 3 4) '(5 6) '(7))

'(1 2 3 4 5 6 . 7)

> (􏿫 1 2 3 '(4))

'(1 2 3 4)

> (􏿜 '(1) '(2) '(3) '((4)))

'(1 2 3 4)

> (􏿜 '(1) '(2 22) '(3 33) '((4 44)))

'(1 2 22 3 33 4 44)

> (􏿜 '(1) '(2 22) '((3 33)) '((4 44)))

'(1 2 22 (3 33) 4 44)

> (􏿜 '(a b) '(c))

'(a b . c)

> (􏿜 '(a b) '((c . d)))

'(a b c . d)

> (􏿜 '() '(a))

'a

> (􏿜 '(a))

'a

5.2.5 🔗

: : means raping over something to make it changing itself, especially means set value. : means only changing one value.
ideograph

🐘 𰁦 􏾩 𢪛

Examples:
> ( '(10 15 20 25) 1 1555)

'(10 1555 20 25)

> (攸/入 '(10 15 20 25) 1 􏽊)

'(10 16 20 25)

5.2.6 􏼏, 􏼏*🔗

􏼏: : means numbers, ref to: .
ideograph

Examples:
> (􏼏 10)

'(0 1 2 3 4 5 6 7 8 9)

> (􏼏 10 20)

'(10 11 12 13 14 15 16 17 18 19)

> (􏼏 10 20 2)

'(10 12 14 16 18)

> (􏼏* 10 20)

'(10 11 12 13 14 15 16 17 18 19 20)

> (􏼏* 10 20 2)

'(10 12 14 16 18 20)

5.2.7 􏼓, 􏼎🔗

􏼓: : originally means three, stands for duplicate data in Ming.
ideograph
􏼎: .
ideograph

Examples:
> (􏼓 5 'foo)

'(foo foo foo foo foo)

> (􏼎 5 )

'(0 1 2 3 4)

> (􏼎 5 􏽊)

'(1 2 3 4 5)

> (􏼎 5 ( (n)
          (􏼓 5 'foo)))

'((foo foo foo foo foo)

  (foo foo foo foo foo)

  (foo foo foo foo foo)

  (foo foo foo foo foo)

  (foo foo foo foo foo))

5.2.8 弔, 弓,弓*, 􏹂, 􏹂*🔗

􏹂: : resembles a rope wraped on stick, thus this rope can be used to count how many circles it is wrapping on stick. Especially means the index of an object in ming-lang.
ideograph
: simplified from and resembles an stick wrapped with a rope in circles, thus it can be used to ref to an specific circle. Especially means reference in ming-lang.
ideograph

🐘  􏾘 􏾝

Examples:
> ( '(a b c d e c f) 2)

'c

> ( '(a b c d e c f) 'c)

2

> (弓* '(a b c d e c f) 'c)

'(2 5)

> (􏹂 '(a b 11 d 22 c f) 米?)

2

> (􏹂* '(a b 11 d 22 c f) 米?)

'(2 4)

5.2.9 􏷜, 􏷛, 􏷚, 􏷙, 􏷘, 􏷗, 􏷖, 􏷕, 􏷔, 􏷓🔗

: means one.
ideograph
: means two.
ideograph
: means three.
ideograph
: means four.
ideograph
: means five.
ideograph
: means six.
ideograph
: means seven.
ideograph
: means eight.
ideograph
: means nine.
ideograph
: means ten.
ideograph

Examples:
> (􏷜 '(1 2 3 4 5 6 7 8 9 10))

1

> (􏷛 '(1 2 3 4 5 6 7 8 9 10))

2

> (􏷚 '(1 2 3 4 5 6 7 8 9 10))

3

> (􏷙 '(1 2 3 4 5 6 7 8 9 10))

4

> (􏷓 '(1 2 3 4 5 6 7 8 9 10))

10

5.2.10 末, 􏹨🔗

: originally means treetop, stands for last in Ming. ( means tree or wood, means tree root.)
ideograph

Examples:
> ( '(1 2 3 4))

4

> (􏹨 '(1 2 3 4))

'(4)

> (􏹨 '(1 2 3 . 4))

'(3 . 4)

5.2.11 🔗

: simplified from , originally means straightedge, ruler, stands for measure length in Ming.
ideograph

🐘 􏹃

Example:
> ( '(a b c d e 3 f g))

8

5.2.12 􏾺,𨚞, 􏷵,􏷴, 􏸄,􏸃, 􏾺/入,𨚞/入, 􏾺?🔗

􏾺/􏷵/􏸄: : means left.

ideograph

𨚞/􏷴/􏸃: : means right.

ideograph

🐘 􏺊

Examples:
> (􏾺 '(a b c d e f g) 2)

'(a b)

> (𨚞 '(a b c d e f g) 2)

'(f g)

> (􏷵 '(a b c d e f g) 2)

'(c d e f g)

> (􏷴 '(a b c d e f g) 2)

'(a b c d e)

> (􏸄 '(a b c d e f g) 2)

'(a b)

'(c d e f g)

> (􏸃 '(a b c d e f g) 2)

'(a b c d e)

'(f g)

> (􏾺/入 '(8 4 a b 1 c d 2 e f g 3 5 9) 米?)

'(8 4)

> (𨚞/入 '(8 4 a b 1 c d 2 e f g 3 5 9) 米?)

'(3 5 9)

> (􏾺? '(a b) '(a b c d e f g))

#t

> (􏾺? '(a b z) '(a b c d e f g))

#f

5.2.13 左􏸑, 左􏸒, 左􏸓🔗

􏸑/􏸒/􏸓: .

ideograph

Examples:
> (左􏸑 '(a b x y z) '(a b c d e f g))

'(a b)

> (左􏸒 '(a b x y z) '(a b c d e f g))

'(x y z)

'(c d e f g)

> (左􏸓 '(a b x y z) '(a b c d e f g))

'(a b)

'(x y z)

'(c d e f g)

5.2.14 𰂋,偏,􏾜,重、𠝤🔗

: means insert between.
ideograph
: means faltten.
ideograph
: simplified from , means shuffle.
ideograph
: means duplication.
ideograph

🐘 

Examples:
> (𰂋 '(a b c d) ')

'(a 和 b 和 c 和 d)

> ( '((a b) (c d) (e f)))

'(a b c d e f)

> (􏾜 '(a b c d e d c b a))

'(a d a c e c d b b)

> ( '(a b c d e d c b a))

'd

> (𠝤 '(a b c d e d c b a))

'(a b c d e)

5.2.15 􏾛、𠆯🔗

: resembles the picture of person standing on his head, means reverse in ming-lang.
ideograph
: simplified from , means in order.
ideograph

Examples:
> (􏾛 '(21 3 888 666 55 77 1000))

'(1000 77 55 666 888 3 21)

> (𠆯 '(21 3 888 666 55 77 1000) <)

'(3 21 55 77 666 888 1000)

> (𠆯 '(21 3 888 666 55 77 1000) >)

'(1000 888 666 77 55 21 3)

> (𠆯 '("cat" "dog" "chicken" "duck" "fox") 􏷁<?)

'("cat" "chicken" "dog" "duck" "fox")

> (𠆯 '("cat" "dog" "chicken" "duck" "fox") 􏷁>?)

'("fox" "duck" "dog" "chicken" "cat")

5.2.16 􏹋、􏹉、􏹊~、􏹊^,􏹅,􏹄,􏹌、􏹈,􏹇~、􏹇🔗

􏹅/􏹇/􏹄/􏹈/􏹌/􏹊: : simplified from , means find, search.

ideograph

Examples:
> (􏹋 'c '(a b c d e f))

'(c d e f)

> (􏹉 'c '((a b) (c d) (e f)))

'(c d)

> (􏹊~ 'c '(a b c d e c f))

'(a b d e c f)

> (􏹊^ '(c e) '(a b c d e c f))

'(a b d f)

> (􏹌 米? '(a b 1 c d 3 e 9 f))

1

> (􏹈 米? '(a b 1 c d 3 e 9 f))

'(1 3 9)

> (􏹅 米? '(a b 1 c d 3 e 9 f))

'(1 c d 3 e 9 f)

> (􏹄 米? '((a b) (1 d) (j k) (8 f)))

'(1 d)

> (􏹇 米? '(a b 1 c d 3 e 9 f))

'(a b c d e f)

> (􏹇~ 米? '(a b 1 c d 3 e 9 f))

'(a b c d 3 e 9 f)

5.2.17 􏹈分,􏹈巨🔗

🐘  􏹃

Examples:
> (􏹈分 米? '(a b 1 c d 3 e 9 f))

'(1 3 9)

'(a b c d e f)

> (􏹈巨 米? '(a b 1 c d 3 e 9 f))

3

5.2.18 􏷒,􏷑, 􏷐,􏷏,􏷎,右􏷎🔗

􏷒: : simplified from , means each.
ideograph
􏷑: (􏷑 PROC (􏿴 a b c)) is simplified from: (􏿴 (PROC a) (PROC b) (PROC c))
ideograph
􏷐: (􏷐 PROC (􏿴 a b c)) is simplf-from: ( (PROC a) (PROC b) (PROC c))
ideograph
􏷏: (􏷏 PROC (􏿴 a b c)) is simplified from: ( (PROC a) (PROC b) (PROC c))
ideograph
􏷎: (􏷎 PROC z (􏿴 a b c)) is simplified from: (PROC c (PROC b (PROC a z)))
(右􏷎 PROC z (􏿴 a b c)) is simplified from: (PROC a (PROC b (PROC c z)))
ideograph

Examples:
> (􏷒 行示 (􏿴 2 4 6 8))

2

4

6

8

> (􏷑 􏽊 '(1 2 3 4))

'(2 3 4 5)

> (􏷑 + '(1 2 3 4) '(100 200 300 400))

'(101 202 303 404)

> (􏷐 􏻛? '(1 2 -3 4))

#f

> (􏷐 + '(1 2 3 4) '(100 200 300 400))

404

> (􏷐 􏻚? '(1 2 -3 4))

#f

> (􏷏 + '(1 2 3 4) '(100 200 300 400))

101

> (􏷎 + 0 '(1 2 -3 4))

4

> (􏷎  '() '(1 2 -3 4))

'(4 -3 2 1)

> (右􏷎  '() '(1 2 -3 4))

'(1 2 -3 4)

5.2.19 􏷑􏹈,􏷑􏿝, 􏷑􏺗、􏷑􏺘🔗

Examples:
> (􏹈􏷑 ( (x) ( (􏻛? x) (􏽊 x))) '(-2 -1 0 1 2))

'(2 3)

> (􏷑􏿝 􏻿化􏿴 '(#(1) #(2 3) #(4)))

'(1 2 3 4)

> (􏷑􏺗 char->integer '(#\a #\y #\b #\k #\c #\j #\d))

#\y

> (􏷑􏺘 char->integer '(#\a #\y #\b #\k #\c #\j #\d))

#\a

> (􏷑􏺗  '((3 pears) (1 banana) (2 apples)))

'(3 pears)

> (􏷑􏺘  '((3 pears) (1 banana) (2 apples)))

'(1 banana)

5.2.20 􏷍/组合、􏷍/排列组合,􏷍/笛卡尔积,􏷍/分组🔗


Examples:
> (􏷍/组合 '(a b c))

'(() (a) (b) (a b) (c) (a c) (b c) (a b c))

> (􏷍/排列组合 '(a b c))

'((a b c) (b a c) (a c b) (c a b) (b c a) (c b a))

> (􏷍/笛卡尔积 '(1 2 3) '(a b c))

'((1 a) (1 b) (1 c) (2 a) (2 b) (2 c) (3 a) (3 b) (3 c))

> (􏷍/分组 米? '(1 a 2 b 3 c))

'((1 2 3) (a b c))

5.2.21 ming/racket/base🔗

word

 :  +  = cons

word

双? :  + ? = pair?

word

 :  +  = car

word

 :  +  = cdr

word

㐅? :  + ? = null?

word

 :  = null

word

􏿴 : 􏿴 = list

word

􏿫 : 􏿫 = list*

word

􏿴? : 􏿴 + ? = list?

word

􏼎 :  + 􏷫 = build-list

word

 :  = list-ref

word

 :  = length

word

􏿝 :  + 􏷫 = append

word

􏾛 :  +  = reverse

word

􏹊~ : 􏹊 + ~ = remove

word

􏹊~/􏷇 : 􏹊~ + / + 􏷇 = remw

word

􏹊~/􏷅 : 􏹊~ + / + 􏷅 = remv

word

􏹊~/冃 : 􏹊~ + / +  = remq

word

􏹊^ : 􏹊 + ^ = remove*

word

􏹊^/􏷇 : 􏹊^ + / + 􏷇 = remw*

word

􏹊^/􏷅 : 􏹊^ + / + 􏷅 = remv*

word

􏹊^/冃 : 􏹊^ + / +  = remq*

word

𠆯 :  +  = sort

word

􏹋 :  +  = member

word

􏹋/􏷇 : 􏹋 + / + 􏷇 = memw

word

􏹋/􏷅 : 􏹋 + / + 􏷅 = memv

word

􏹋/冃 : 􏹋 + / +  = memq

word

􏹅 : 􏹌 +  = memf

word

􏹉 :  +  = assoc

word

􏹉/􏾗 : 􏹉 + / + 􏾗 = assw

word

􏹉/􏾃 : 􏹉 + / + 􏾃 = assv

word

􏹉/侗 : 􏹉 + / +  = assq

word

􏹄 :  + 􏹌 = assf

word

􏹌 :  +  = findf

word

􏹈 :  + 􏹌 = filter

word

􏷒 :  +  = for-each

word

􏷑 :  + 􏷒 = map

word

􏷐 :  + 􏷒 = andmap

word

􏷏 :  + 􏷒 = ormap

word

􏷎 :  + 􏷒 = foldl

word

右􏷎 :  + 􏷎 = foldr

word

阳+ : 阳+ = caar

word

阴+ : 阴+ = cadr

word

阳- : 阳- = cdar

word

阴- : 阴- = cddr

word

阳++ : 阳+ = caaar

word

阴++ : 阴+ = caadr

word

阳-+ : 阳- = cadar

word

阴-+ : 阴- = caddr

word

阳+- : 阳+ = cdaar

word

阴+- : 阴+ = cdadr

word

阳-- : 阳- = cddar

word

阴-- : 阴- = cdddr

word

阳+++ : 阳+ = caaaar

word

阴+++ : 阴+ = caaadr

word

阳-++ : 阳- = caadar

word

阴-++ : 阴- = caaddr

word

阳+-+ : 阳+ = cadaar

word

阴+-+ : 阴+ = cadadr

word

阳--+ : 阳- = caddar

word

阴--+ : 阴- = cadddr

word

阳++- : 阳+ = cdaaar

word

阴++- : 阴+ = cdaadr

word

阳-+- : 阳- = cdadar

word

阴-+- : 阴- = cdaddr

word

阳+-- : 阳+ = cddaar

word

阴+-- : 阴+ = cddadr

word

阳--- : 阳- = cdddar

word

阴--- : 阴- = cddddr

5.2.22 ming/racket/list🔗

word

 :  = empty

word

􏷜 :  +  = first

word

􏷛 :  +  = second

word

􏷚 :  +  = third

word

􏷙 :  +  = fourth

word

􏷘 :  +  = fifth

word

􏷗 :  +  = sixth

word

􏷖 :  +  = seventh

word

􏷕 :  +  = eighth

word

􏷔 :  +  = ninth

word

􏷓 :  +  = tenth

word

 :  = last

word

􏹨 :  +  = last-pair

word

􏼓 :  + 􏷫 = make-list

word

 :  + +  = list-set

word

攸/入 :  + / +  = list-update

word

 :  = index-of

word

􏹂 :  +  = index-where

word

弓* :  + * = indexes-of

word

􏹂* : 􏹂 + * = indexes-where

word

􏾺 :  +  = take

word

𨚞 :  +  = take-right

word

􏷵 :  +  = drop

word

􏷴 :  +  = drop-right

word

􏾺/入 : 􏾺 + / +  = takef

word

𨚞/入 : 𨚞 + / +  = takef-right

word

􏷵/入 : 􏷵 + / +  = dropf

word

􏷴/入 : 􏷴 + / +  = dropf-right

word

􏸄 :  +  = split-at

word

􏸃 :  +  = split-at-right

word

􏸄/入 : 􏸄 + / +  = splitf-at

word

􏸃/入 : 􏸃 + / +  = splitf-at-right

word

􏾺? : 􏾺 + ? = list-prefix?

word

左􏸑 :  + + 􏸋 = take-common-prefix

word

左􏸒 :  + + 􏸌 = drop-common-prefix

word

左􏸓 :  + + 􏸍 = split-common-prefix

word

􏿜 :  + 􏷩 = append*

word

𰂋 :  +  = add-between

word

 :  +  = flatten

word

􏾜 :  +  = shuffle

word

 :  = check-duplicates

word

𠝤 :  +  = remove-duplicates

word

􏹇 : 􏹌 +  = filter-not

word

􏹈分 : 􏹈 +  = partition

word

􏹈巨 : 􏹈 +  = count

word

􏹈􏷑 : 􏹈 + 􏷑 = filter-map

word

􏷑􏿝 : 􏷑 + 􏿝 = append-map

word

􏼏 :  + 􏷫 = range

word

􏼏* : 􏼏 + * = inclusive-range

word

􏷍/组合 : 􏷍 + / + 组合 = combinations

word

􏷍/排列组合 : 􏷍 + / + 排列组合 = permutations

word

􏷍序列/组合 : 􏷍序列 + / + 组合 = in-combinations

word

􏷍序列/排列组合 : 􏷍序列 + / + 排列组合 = in-permutations

word

􏷑􏺗 : 􏷑 + 􏺗 = argmax

word

􏷑􏺘 : 􏷑 + 􏺘 = argmin

word

􏷍/分组 : 􏷍 + / + 分组 = group-by

word

􏷍/笛卡尔积 : 􏷍 + / + 笛卡尔积 = cartesian-product

word

􏹇~ : 􏹇 + ~ = remf